
KNOWLEDGE ORGANISER
COMP 2 REVISION: COMPUTATIONAL THINKING, ALGORITHMS &

PROGRAMMING

2.1 – Algorithms - Computational Thinking
KEY TERMS

Algorithm: Steps to provide a solution
to a problem, usually represented in
flowcharts or pseudocode

Decompose: Breaking down a large
problem into smaller sub-problems

Abstraction: Representing 'real world'
problems in a computer using variables
and symbols and removing unnecessary
elements from the problem e.g

Algorithmic Thinking: Identifying the
steps involved in solving a problem.

Sequence: Completing steps in the
order which they must happen

Selection: Where a choice is made in a
program depending on a condition or
outcome

Iteration: Act of repeating or lopping
specific sections of code

What is Computational thinking?

The thought processes involved in
formulating a problem and its
solution(s), so that a computer,
human or machine can effectively
carry out

How do you think
computationally?

To effectively solve problems you need
to….

• Decompose
• Abstract
• Algorithmic thinking
• Create algorithms

WHILE TRUE:

temp = “”

IF temp > than 20c THEN
Open windows AND heaters OFF

ELSE

Close windows AND heaters ON

TIME = “”

IF TIME = 18.00 THEN

Sprinklers on

ELSE

Sprinklers off

Continue

BREAK

Flowcharts
Displays an algorithm in diagram form using
symbols and arrows to show to flow of
information

Pseudocode
A structured use of English used to define
the steps needed to solve a problem.

3

3

1

1
2

2.1 – Algorithms – 4. Flowcharts
START/STOP

PROCESS
INPUT/OUTPUT

Is
A>10

?

YES

Decision

No

SUB
ROUTINE

Always start and end with this
Sequence that performs a specific task.
You can use this within your flowchart

to show more detail in a specific section

To do something in
the program e.g a

calculation

Use when there is an input or output
required e.g. user inputs their name,

program displays their name

When a choice has to
be made in the

program

Flow lines – show
the flow of

information in the
algorithm

2.1 – Algorithms – 5. Pseudocode
Pseudocode uses English.

It mimics how your code may look
in the programming language BUT

it DOESN’T have to be exact

Some useful terms you could
use.

START
IF

ELIF
ELSE
FOR

WHILE TRUE
ENDIF
END

The OCR Pseudocode guide has more
information if you wish to do more

research.Here are some symbols to use
Comparison operators

== Equal to
!= Not equal to

< Less than
<= Less than or equal to
 Greater than

>= Greater than or equal to

Arithmetic Operators

+ Add

- Subtract
/ Divide

* Multiply
MOD will return the remainder for the

division

WHILE TRUE:

temp = “”

IF temp > than 20c THEN
Open windows AND heaters OFF

ELSE
Close windows AND heaters ON

TIME = “”
IF TIME = 18.00 THEN

Sprinklers on
ELSE

Sprinklers off
Continue

BREAK

This repeats, it reads the temp of a
greenhouse. If greater than 20 degs then
open windows and turn heaters off ELSE

close windows and heaters on

It checks the time if the time is 6pm then turn
sprinklers on otherwise keep sprinklers off

2.1 – Sorting Algorithms – Bubble, Insertion & merge

2.1 – Sorting Algorithms - Binary and Linear searches

2.2 Programming Techniques
Constant
Value STORED IN A MEMORY LOCATION that
never changes WITHIN A PROGRAM

Variable
Value STORED IN MEMORY LOCATION that
can change WITHIN IN A PROGRAM

Data Types
Real /Float
Number with decimal Point
Integer
Number without a decimal Point
String
A series of characters/TEXT
Character
A single letter or symbol
Date/Time
Date and Time in any format
Boolean
Yes no, true false value

Syntax Error
An error in the rules/grammar of the language
Logic Error
The program is written to do something other than what the programmer intended
Eg Resetting only the first 9 elements in an array instead of all 10.

Run Time Error:
More difficult to spot as it can run a program without reporting an error. E.g. runs but
Doesn’t give an output. Or the program hangs or Becomes inactive

Sequence: Completing steps in the order
which they must happen

Selection: Where a choice is made in a
program depending on a condition or
outcome

Iteration: Act of repeating or lopping
specific sections of code

Count controlled Iteration:
Repeats a set number of times

Condition controlled: Repeats
until a condition is met or something in the
program changes

Other Info
Concatenate
To join different data types together

Comments
Use these to add comments in to your
code to explain what you have done

Validation: An computer check to
ensure that the data entered is
sensible and reasonable. It does
not check the accuracy of data.

2.2 Programming Techniques

FUNCTIONS –
These are BLOCKS of code that perform a
specific task.
Functions will perform calculations and they
will RETURN a value

PROCEDURES -
Procedure will perform a specific task and
nit necessarily return values.

A procedure performs a task, whereas a
function produces information.

2.2 Programming Techniques

FUNCTIONS –
These are BLOCKS of code that perform a
specific task.
Functions will perform calculations and they
will RETURN a value

PROCEDURES -
Procedure will perform a specific task and
nit necessarily return values.

A procedure performs a task, whereas a
function produces information.

2.2 Programming Techniques

TYPE INFO SYNTAX

LIST MUTABLE
DIFFERENT DATA TYPES

[]
E.G. [1,”HELLO”, 3.4]

TUPLE IMMUTABLE
DIFFERENT DATA TYPES

()
E.G. (1,2, “Hello”, 4.3)

ARRAY IMMUTABLE
SAME DATA TYPE

[]
E.G [1,2,3,4]

2.3 Robust Programs
Producing robust programs so that they are

defensive against hacks and attacks.

Data Validation: check to ensure that the data entered
is sensible and reasonable. It does not check the
accuracy of data.

Data Sanitisation: Trims or strips strings, removing
unwanted characters to make sure it contains only
permitted characters . E.g. Da%ve the % would be
removed.

Authentication: The process of verifying the identify of
a user or process

Maintainability : Updating code so that it is compatible
with current requirements

Comments: To help describe the code and structures
in a program using #

Indentation: used to show the programs structure e.g.
where selection or iteration or functions are used .

Data Validation techniques

Anticipating Misuse: Defensive program design will consider and anticipate
misuse. Misuse may be in the form of a brute force attack on the program.

E.G Many programs and systems only allow a user to enter a password three
or four times before it locks out the system.

Contingency Planning: Once a programmer has anticipated the misuse they can
then plan for the these issues. For example: Limiting the number of logon
attempts. Ensuring the code is robust in validating the data entered

2.3 Robust Programs
Iterative testing: This happens overtime and is repeated
throughout the development of the program

Final/terminal testing: is when the product is released
and real end users begin using it. Very often, end users
find things wrong with systems that the programmers
did not expect.

Syntax Errors: An error in the rules/grammar of the
language Eg missing colon / spelling mistake

Logic errors: The program is written to do something
other than what the programmer intended Eg Resetting
only the first 9 elements in an array instead of all 10.

Test Data: Something which has been specifically
identified for use in tests, typically of a computer
program

Test data – When testing your programs it is important to use of
data to test and to create a test plan.

Example test plan

2.4 Computational logic

Not Gate

Inverts the input (0 becomes 1 and 1
becomes 0

IN OUT

0 1

1 0

OR Gate

Wait for either inputs to be 1 for output to
be 1

A OR B

A B Out

0 0 0

0 1 1

1 0 1

1 1 1

AND Gate

Both inputs to be 1 for output to be 1
A AND B

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

Truth Tables: Display all possible
outcomes for that gate

Logic Gate: A building block of a digital circuit. They
perform logical functions in a circuit and use binary

How many rows do you need in a truth
Table?

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑅𝑜𝑤𝑠 = 2௡௨௠௕௘௥ ௢௙ ௜௡௣௨௧௦

So for 1 input = 1 x 2 = 2
For 2 inputs = 2 x 2 = 4
For 3 inputs = (2x2)x2 = 8
For 4 inputs = 2x2x2x2 = 16

HINT: when completing the
inputs in a truth table – don’t
forget to count up in binary, to
make sure you have all possible
inputs
A and B re inputs. There are 4
rows – starting from 0 make the
binary numbers 0,1,2,3.

2.4 Computational logic
Logic CIRCUIT: A combination of
different logic gates used to perform
more complex tasks

Notation
The symbols used to describe logic
gates
⋀ And
V Or

EG. The notation below means – P =
A and b and not c. When you draw
the circuit the one in brackets goes

first
Y = A B (C)

TRANSISTOR: A tiny switch that is activated by the
electronic signals it receives. The digits 1 and 0
used in binary reflect the on and off states of this.

C

A B Out

0 0 0

0 1 0

1 0 0

1 1 1

0
1
2
3

An example logic circuit, with notations and truth table

Half Adder: A circuit to add two binary bits
together

Full Adder circuit: 2 half adders together.
This can add more than two binary bits
together and deal with carrying bits over

2.4 Computational logic Why is data represented in Binary in a
computer system?:
• Binary is the representation of the

‘presence’ of electricity
• If present or ‘on’ we use a: 1
• If absent or ‘off’ we use a: 0
• We can use this idea to change 1 and 0

states through the use of logic gates
• Logic Gates take inputs and covert them to

an output
• The digit 1 or 0 is stored in transistors

which are in the processor.

A ⋀ (B V C)

2.5 Translators and Facilities

Sequence
A list of instructions to be
followed one after the other.
Step by step

Iteration
code is executed repeatedly
For I in range (10);

Print (i)

Selection
A condition is used to decide
executed
• if x = 1 then y = 3 else x whether
code should be = 2

High Level Language (eg Python)
• Use Instructions are in Words
• Designed to be read by human programmers
• Portable/translated for different machines
PROS: Easy for humans to understand as written in English
CONS: Needs to be translated in to machine code so not as
fast to execute

Translators
Interpreters:
Translates one line of HL code at a time…
 … and executes it
 … stops when it finds an error
 … can be resumed
Compilers:
Translates whole program of HL code at a time…
 … and executes it
 … stops when it finds an error
Assembler:
Translates Assembly language into machine code

Machine Code (Binary Code) (low level)
• Instructions are in binary code Designed to be

read/executed by the computer
• Specific to a particular machine
PROS: Fast no need to translate already in binary, close to
CPU
CONS: Difficult to read and understand for humans

Assembly Language (low level)
• Low Level Language written in mnemonics that closely

reflect the operations of the CPU
• Eg LOAD
PROS: A bite easier to understand than binary as uses
mnemonics
CONS: Still needs translating to machine code using an
Assembler translator

How Instructions are stored in Binary.

• The instruction consists of an operator/op
code and an operand

• both stored as bit patterns
• (op code) from a given instruction set
• Each op code has a unique bit pattern

Why Use Binary.
• So that computers can be based on logic

circuits.
• (each part of the circuit) can be in one of two

states
• 0 and 1/true or false

2.5 Translators and Facilities
TOOLS FOR PROGRAMMING

IDE (intergrated Development Environment): A software
application that provides all the facilities to computer programmers for
developing programs. It normally consists of a source code editor, build
automation tools and a debugger

Code Editor – edits program text, you can type our your source
code here
Syntax Checks – Highlights syntax errors

Runtime Environment – allows programs to be run one line at a
time – helps test programs and locate errors.

Translator – Compiles or interprets the code

Libraries – Provides functions not included in core part of
programming languages (eg Random)

Debugger – Helps to detect errors. Suggests what type of error it
is and what line it is on.

Programming Standards
Code should follow agreed conventions (EG Lowercase for
variable names, schemes to be followed).

Language code is written in.

Functions used to tidy up repeated code.

Comments explain the code clearly.

Correct use of indentation.

Useful identifiers (File names & Variable names)

Code should follow agreed conventions

Source Code: The code the programmer writes

Object Code: code converted by the compiler
so that it can be understood by the computer

Executable Code: Files which contain
instructions in machine code. These
instructions are carried out in the computer
hardware

2.6 Data Representation - Images

Images store as binary ….
• Stored as Bitmap file as pixels
• Each Pixel of Image is made up of

a 1 or 0.
• Following information about

image is stored in file:
• Width of the picture in pixels.
• Number of bits used for each

pixel
• Colour of each pixel.

• Image Resolution = The
concentration of pixels in an image

• Higher Resolution = More Pixels =
Larger File Size

• Lower Resolution = Less Pixels =
Smaller File Size.

Metadata: data about data - Certain information must be defined for
the bitmap image. E.g. width, height, pixels, colours,

Colour depth
How many bits will be used to store the colour for each pixel in the grid.
E.g. 8 bit (1011001) allows 256 different colours.

The greater the colour depth: The more realistic colours, The more data
needs to be stored and the larger the file size on disk

2.6 Data Representation - Sound
Sound stored as Binary
• The height/amplitude of the sound wave is measured

• at regular intervals
• and converted to binary.

• If the interval is smaller
• More samples taken
• more data to store
• larger files
• the sound reproduced is closer to the original - better

quality.

Digital sound is broken down into thousands
of samples per second – each of these
samples is then stored as binary data.
The quality that the samples are stored with
depends on different factors:

‒ Sample Frequency - The number of
audio samples captured every second

‒ Sample Size/ Bit Depth - Number of
bits available for each sample

‒ Bit Rate - The number of bits used per
second of audio

Sound exists as waves – however as computers only
understand binary values this needs to be converted into such
Sounds created on a computer exist as digital information that
is encoded as audio files

Low sample rate

High sample rate

Compression: The method computers use to make files
smaller by reducing the number of bits (1’s and 0’s) used to
store the information. Can be used for any files including
sound and image files
Lossy compression: makes the file smaller by getting rid of
bits that aren’t really noticeable to the human eye. Once a
file has been compressed using a lossy method, any bits
that are lost cannot be recovered.
Lossless compression: The file is reduced without losing
any quality so the original file can be restored.

Lossy compression usually has smaller file sizes than lossless

2.6 Data Representation - Sound
How is sound stored in Binary?

Audio file is inputted through a microphone - broken down into
thousands of samples per second,
More samples recorded per second the higher the quality of the
audio file, but the more memory it will consume.
Each sound sample is stored as Binary Data.
The more bits per sample also increases the higher the quality
of the audio, on a CD the bit depth is usually 16 bits

Lossy compression: makes the file smaller by getting rid of bits
that aren’t really noticeable to the human eye. Once a file has
been compressed using a lossy method, any bits that are lost
cannot be recovered. + can produce smaller file sizes. - No
good if 100% accuracy required e.g. text files

Lossless compression: The file is reduced without losing any
quality so the original file can be restored.
+ Original file can be restored without losing any data. - Not
all files can be compressed using lossless compression

Compression: The method computers use to make files smaller
by reducing the number of bits (1’s and 0’s) used to store the
information. Can be used for any files including sound and
image files

2.6 Data Representation - Characters
Character Set
is used to describe the possible characters that can be represented in a

computer system. E.g A a, 123, @!”£, emoji’s

Ascii (American Standard Code for Information Interchange)
• Each character is given a binary code
• Uses 7 Bits this gives 128 possible characters
• Extended Ascii used 8 bits – 256 characters – enough for the English

language
• Some codes are reserved for control characters (eg TAB, Carriage

Return)

Unicode
• Unicode has a much larger character set
• can represent many more characters/characters from all alphabets
• uses 16 bits
• It uses 2 bytes that give us 216 possibilities (65,536).
• This is used universally to represent many more languages than our

own

2.6 Data Representation

Denary to Binary Conversion
• Write out the column headings (128,64,32,16,8,4,2,1)
• Work out how to make the denary number from those

columns.
• If you don’t use all the table headings DON’T just fill them

with 0’s
20 denary is 10100 in Binary…..

Binary to Denary Conversion
• Write out the column headings (128,64,32,16,8,4,2,1) over the

binary number.
• Add all the column headings in which there is a 1

10000111 = 71 in Denary….. How? I added up the numbers
above the 1’s in the table….64+4+2+1

Binary Addition

0 + 0 = 0
0 + 1 = 1
1 + 0 = 1
1 + 1 = 0 Carry 1
1 + 1 + 1 = 1 Carry 1

If the result of the addition has
a 1 in the 9th bit then Result
cannot be held in 1 byte (8 bits)
so will need to have a 2nd Byte.

This is an OVERFLOW ERROR.

16 8 4 2 1

1 0 1 0 0

Binary – Known as BASE 2 – Uses 2 digits (1 or 0) – This is why we
DOUBLE the headings in our tables when we convert binary to
denary and vice versa

Denary is known as BASE 10 – Uses 10 digits (0-9)

Hexadecimal is knows as BASE 16 - uses 16 digits (0-9 and A-F)

64 32 16 8 4 2 1

1 0 0 0 1 1 1

HINT: A typical exam question will not give you the table
headings so make sure you remember to use these

Exam questions usually give you 2 marks
1 for correct answer

1 for showing your working outDoes 16 go in to 20? – yes – put a 1.
There is 4 left
Does 8 go in to 4? – no – put a 0
Does 4 go in to 4? – yes put a 1.
At this point we had no numbers
left so we add 0’s

2.6 Data Representation
Denary to Hex Conversion

e.g. Convert 167 into Hexadecimal
1. Divide the number by 16:
167/16= 10
2. Record the remainder:
Remainder = 7
So 10 in Hex is A and 7 in Hex is 7
Therefore the answer = A7

Convert Hex to Denary
• Take the hex number and split it
• Times the left by 16 and the right by 1
• Add these together to get Denary
• E.g. See table to convert 4C

16 1

4 C (12 in
denary)

4*16=64 12*1=12

64+12=76

Binary to Hex Conversion

To convert 10101011 into Hex, we can use the following steps:
1. Split into 2 nibbles: 1010 1011
2. Convert each nibble into decimal: 1010 = 10 1011 =11
3. 10 in hex is A and 11 in Hex is B
4. Therefore 10101011 in Hex is AB

HEXDECIMAL
BASE 16. Uses 0-9 and then A-F

Notice that we use the values A-F to represent 10-15

2.6 Data Representation

Hex to Binary Conversion

To convert from Hexadecimal to Binary we can do the opposite,
where we convert each digit into a nibble.

To convert 3B into Binary, we can use the following steps:
1. Split into 2 digits: 3 B
2. Convert each digit into 4 bits (a nibble!):

3= 0011 B=1011
3. Therefore 3B in Binary is 00111011

